Towards Semantic KinectFusion

نویسندگان

  • Nicola Fioraio
  • Gregorio Cerri
  • Luigi di Stefano
چکیده

In this paper we propose an extension to the KinectFusion approach which enables both SLAM-graph optimization, usually required on large looping routes, as well as discovery of semantic information in the form of object detection and localization. Global optimization is achieved by incorporating the notion of keyframe into a KinectFusion-style approach, thus providing the system with the ability to explore large environments and maintain a globally consistent map. Moreover, we integrate into the system our recent object detection approach based on a new Semantic Bundle Adjustment paradigm, thereby achieving joint detection, tracking and mapping. Although our current implementation is not optimized for real-time operation, the principles and ideas set forth in this paper can be considered a relevant contribution towards a Semantic KinectFusion system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DA-RNN: Semantic Mapping with Data Associated Recurrent Neural Networks

3D scene understanding is important for robots to interact with the 3D world in a meaningful way. Most previous works on 3D scene understanding focus on recognizing geometrical or semantic properties of a scene independently. In this work, we introduce Data Associated Recurrent Neural Networks (DA-RNNs), a novel framework for joint 3D scene mapping and semantic labeling. DA-RNNs use a new recur...

متن کامل

Kintinuous: Spatially Extended KinectFusion

In this paper we present an extension to the KinectFusion algorithm that permits dense mesh-based mapping of extended scale environments in real-time. This is achieved through (i) altering the original algorithm such that the region of space being mapped by the KinectFusion algorithm can vary dynamically, (ii) extracting a dense point cloud from the regions that leave the KinectFusion volume du...

متن کامل

Moving Volume KinectFusion

The recently reported KinectFusion algorithm uses the Kinect and GPU algorithms to simultaneously track the camera and build a dense scene reconstruction in real time. However, it is locked to a fixed volume in space and can not map surfaces that lie outside that volume. We present moving volume KinectFusion with additional algorithms to automatically translate and rotate the volume through spa...

متن کامل

Volume-Based Semantic Labeling with Signed Distance Functions

Research works on the two topics of Semantic Segmentation and SLAM (Simultaneous Localization and Mapping) have been following separate tracks. Here, we link them quite tightly by delineating a category label fusion technique that allows for embedding semantic information into the dense map created by a volume-based SLAM algorithm such as KinectFusion. Accordingly, our approach is the first to ...

متن کامل

Towards constructing an Integrative, Multi-Level Model for Cognition: The Function of Semantic Networks

Integrated approaches try to connect different constructs in different theories and reinterpret them using a common conceptual framework. In this research, using the concept of processing levels, an integrated, three-level model of the cognitive systems has been proposed and evaluated. Processing levels are divided into three categories of Feature-Oriented, Semantic and Conceptual Level based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013